STRINGSTRING
ACOX3 ACOX3 ACAA1 ACAA1 ACADL ACADL ACADS ACADS MECR MECR ACOX1 ACOX1 ACOX2 ACOX2 ACADSB ACADSB SCP2 SCP2 HSD17B4 HSD17B4 ACADVL ACADVL
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent shared physical complex
The edges indicate that the directly linked proteins are part of the same physical complex; commonly in large complexes this may not signify they are directly binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACOX3Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids. Belongs to the acyl-CoA oxidase family. (700 aa)    
Predicted Physical Partners:
ACAA1
3-ketoacyl-CoA thiolase, peroxisomal; acetyl-CoA acyltransferase 1; Belongs to the thiolase-like superfamily. Thiolase family.
     
 0.923
ACADL
Long-chain specific acyl-CoA dehydrogenase, mitochondrial; Long-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (By similarity). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl- CoA (By similarity). Among the different mitochondrial acyl [...]
     
  0.900
ACADS
Short-chain specific acyl-CoA dehydrogenase, mitochondrial; Short-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (By similarity). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl- CoA (By similarity). Among the different mitochondrial ac [...]
     
  0.900
MECR
Enoyl-[acyl-carrier-protein] reductase, mitochondrial; Catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (fatty acid synthesis type II). Fatty acid chain elongation in mitochondria uses acyl carrier protein (ACP) as an acyl group carrier, but the enzyme accepts both ACP and CoA thioesters as substrates in vitro. Has a preference for short and medium chain substrates, including trans-2-hexenoyl-CoA (C6), trans-2-decenoyl-CoA (C10), and trans-2-hexadecenoyl-CoA (C16).
     
  0.900
ACOX1
Peroxisomal acyl-CoA oxidase 1, A chain; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA.
     
  0.900
ACOX2
Peroxisomal acyl-coenzyme A oxidase 2; Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycholestanoic acids. Capable of oxidizing short as well as long chain 2-methyl branched fatty acids (By similarity); Belongs to the acyl-CoA oxidase family.
     
  0.900
ACADSB
Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial; Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2- methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent.
     
  0.900
SCP2
Non-specific lipid-transfer protein; Mediates in vitro the transfer of all common phospholipids, cholesterol and gangliosides between membranes. May play a role in regulating steroidogenesis.
     
  0.900
HSD17B4
Peroxisomal multifunctional enzyme type 2; Bifunctional enzyme acting on the peroxisomal beta-oxidation pathway for fatty acids. Catalyzes the formation of 3-ketoacyl-CoA intermediates from both straight-chain and 2-methyl-branched-chain fatty acids.
     
  0.900
ACADVL
Very long-chain specific acyl-CoA dehydrogenase, mitochondrial; Active toward esters of long-chain and very long chain fatty acids such as palmitoyl-CoA, myristoyl-CoA and stearoyl-CoA. Can accommodate substrate acyl chain lengths as long as 24 carbons, but shows little activity for substrates of less than 12 carbons. Belongs to the acyl-CoA dehydrogenase family.
     
  0.900
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (30%) [HD]